AlphaCodingSkills

Merge Sort


Advertisements

Previous Page Next Page

Merge sort is a divide and conquer algorithm. It is based on the idea of dividing the unsorted array into several sub-array until each sub-array consists of a single element and merging those sub-array in such a way that results into a sorted array. The process step of merge sort can be summarized as follows:

  • Divide: Divide the unsorted array into several sub-array until each sub-array contains only single element.
  • Merge: Merge the sub-arrays in such way that results into sorted array and merge until achieves the original array.
  • Merging technique: the first element of the two sub-arrays is considered and compared. For ascending order sorting, the element with smaller value is taken from the sub-array and becomes a new element of the sorted array. This process is repeated until both sub-array are emptied and the merged array becomes sorted array.

Example:

To understand the merge sort, lets consider an unsorted array [4, 9, -4] (right side array created after 11th process in the below diagram) and discuss each step taken to sort the array in ascending order.

At the first step, the array [4, 9, -4] is divided into two sub-array. The first sub-array contains [4, 9] and second sub-array contains [-4]. As the number of element in the first sub-array is greater than one, it is further divided into sub-arrays consisting of elements [4] and [9] respectively. As the number of elements in all sub-arrays is one, hence the further dividing of the array can not be done.

In the merging process, The sub-arrays formed in the last step are combined together using the process mentioned above to form a sorted array. First, [4] and [9] sub-arrays are merged together to form a sorted sub-array [4, 9]. Then [4, 9] and [-4] sub-arrays are merged together to form final sorted array [-4, 4, 9]

Merge Sort

Implementation of Merge Sort



# function for merge sort - splits the MyList 
# and call merge function to sort and merge the MyList
# mergesort is a recursive function
def mergesort(MyList, left, right):
  if left < right:
    mid = left + (right - left)//2
    mergesort(MyList, left, mid)
    mergesort(MyList, mid+1, right)
    merge(MyList, left, mid, right)

# merge function performs sort and merge operations
# for mergesort function
def merge(MyList, left, mid, right):
  #  Create two temporary List to hold splitted 
  #  elements of main MyList 
  n1 = mid - left + 1  # no of elements in LeftList
  n2 = right - mid     # no of elements in RightList 
  LeftList = MyList[left:mid+1] 
  RightList = MyList[mid+1:right+1]

  #  In below section x, y and z represents index number
  #  of LeftList, RightList and MyList respectively
  x, y, z = 0, 0, left
  while x < n1 and y < n2:
    if LeftList[x] < RightList[y]: 
      MyList[z] = LeftList[x] 
      x+=1 
    else:
      MyList[z] = RightList[y]  
      y+=1 
    z+=1

  #  Copying the remaining elements of LeftList
  while x < n1:
    MyList[z] = LeftList[x]  
    x+=1  
    z+=1
  #  Copying the remaining elements of RightList
  while y < n2:
    MyList[z] = RightList[y]
    y+=1  
    z+=1 
# function to print list
def PrintList(MyList):
  for i in MyList:
    print(i, end=" ")
  print("\n")

# test merge sort code                 
MyList = [10, 1, 23, 50, 4, 9, -4]
n = len(MyList)
print("Original List")
PrintList(MyList)

mergesort(MyList, 0, n-1)

print("Sorted List")
PrintList(MyList)

Output

Original List
10 1 23 50 4 9 -4 

Sorted List
-4 1 4 9 10 23 50 



public class MyClass {
  // function for merge sort - splits the array 
  // and call merge function to sort and merge the array
  // mergesort is a recursive function
  static void mergesort(int Array[], int left, int right) 
  {
    if (left < right)
    { 
      int mid = left + (right - left)/2;
      mergesort(Array, left, mid);
      mergesort(Array, mid+1, right);
      merge(Array, left, mid, right);
    }
  }

  // merge function performs sort and merge operations
  // for mergesort function
  static void merge(int Array[], int left, int mid, int right) 
  {
      // Create two temporary array to hold splitted 
      // elements of main array 
      int n1 = mid - left + 1; //no of elements in LeftArray
      int n2 = right - mid;     //no of elements in RightArray    
      int LeftArray[] = new int[n1];
      int[] RightArray = new int [n2];
      for(int i=0; i < n1; i++)
       { 
         LeftArray[i] = Array[left + i];
       }
      for(int i=0; i < n2; i++)
       { 
         RightArray[i] = Array[mid + i + 1];
       }

      // In below section x, y and z represents index number
      // of LeftArray, RightArray and Array respectively
      int x=0, y=0, z=left;
      while(x < n1 && y < n2)
      {
        if(LeftArray[x] < RightArray[y])
           { 
              Array[z] = LeftArray[x]; 
              x++; 
           }
        else
           { 
             Array[z] = RightArray[y];  
             y++; 
           }
        z++;
      }
      // Copying the remaining elements of LeftArray
      while(x < n1)
      { 
         Array[z] = LeftArray[x];  
         x++;  z++;
      }
      // Copying the remaining elements of RightArray
      while(y < n2)
      { 
        Array[z] = RightArray[y]; 
        y++;  z++; 
      }
  }

  // function to print array
  static void PrintArray(int Array[]) 
    { 
        int n = Array.length; 
        for (int i=0; i<n; i++) 
        {  
          System.out.print(Array[i] + " "); 
        }
        System.out.println(); 
    } 

  //test merge sort code
  public static void main(String[] args) {
    int[] MyArray = {10, 1, 23, 50, 4, 9, -4};
    int n = MyArray.length;
    System.out.println("Original Array");
    PrintArray(MyArray);

    mergesort(MyArray, 0, n-1);
    System.out.println("\nSorted Array");
    PrintArray(MyArray); 
  }
}

Output

Original Array
10 1 23 50 4 9 -4 

Sorted Array
-4 1 4 9 10 23 50 



#include <iostream>
using namespace std;

static void mergesort(int Array[], int left, int right);
static void merge(int Array[], int left, int mid, int right);
static void PrintArray(int Array[], int n);

  // function for merge sort - splits the array 
  // and call merge function to sort and merge the array
  // mergesort is a recursive function
  static void mergesort(int Array[], int left, int right) 
  {
    if (left < right)
    { 
      int mid = left + (right - left)/2;
      mergesort(Array, left, mid);
      mergesort(Array, mid+1, right);
      merge(Array, left, mid, right);
    }
  }

  // merge function performs sort and merge operations
  // for mergesort function
  static void merge(int Array[], int left, int mid, int right) 
  {
      // Create two temporary array to hold splitted 
      // elements of main array 
      int n1 = mid - left + 1; //no of elements in LeftArray
      int n2 = right - mid;     //no of elements in RightArray    
      int LeftArray[n1], RightArray[n2];
      for(int i=0; i < n1; i++)
       { 
         LeftArray[i] = Array[left + i];
       }
      for(int i=0; i < n2; i++)
       { 
         RightArray[i] = Array[mid + i + 1];
       }

      // In below section x, y and z represents index number
      // of LeftArray, RightArray and Array respectively
      int x=0, y=0, z=left;
      while(x < n1 && y < n2)
      {
        if(LeftArray[x] < RightArray[y])
           { 
              Array[z] = LeftArray[x]; 
              x++; 
           }
        else
           { 
             Array[z] = RightArray[y];  
             y++; 
           }
        z++;
      }
      // Copying the remaining elements of LeftArray
      while(x < n1)
      { 
         Array[z] = LeftArray[x];  
         x++;  z++;
      }
      // Copying the remaining elements of RightArray
      while(y < n2)
      { 
        Array[z] = RightArray[y]; 
        y++;  z++; 
      }
  }

  // function to print array
  static void PrintArray(int Array[], int n) 
  { 
    for (int i=0; i<n; i++) 
      {  
        cout<<Array[i]<<" "; 
      }
    cout<<"\n"; 
  } 

 // test merge sort code
 int main (){
    int MyArray[] = {10, 1, 23, 50, 4, 9, -4};
    int n = sizeof(MyArray) / sizeof(MyArray[0]); 
    cout<<"Original Array\n";
    PrintArray(MyArray, n);

    mergesort(MyArray, 0, n-1);
    cout<<"\nSorted Array\n";
    PrintArray(MyArray, n);
    return 0;
 }

Output

Original Array
10 1 23 50 4 9 -4 

Sorted Array
-4 1 4 9 10 23 50



#include <stdio.h>

static void mergesort(int Array[], int left, int right);
static void merge(int Array[], int left, int mid, int right);
static void PrintArray(int Array[], int n);

  // function for merge sort - splits the array 
  // and call merge function to sort and merge the array
  // mergesort is a recursive function
  static void mergesort(int Array[], int left, int right) 
  {
    if (left < right)
    { 
      int mid = left + (right - left)/2;
      mergesort(Array, left, mid);
      mergesort(Array, mid+1, right);
      merge(Array, left, mid, right);
    }
  }

  // merge function performs sort and merge operations
  // for mergesort function
  static void merge(int Array[], int left, int mid, int right) 
  {
      // Create two temporary array to hold splitted 
      // elements of main array 
      int n1 = mid - left + 1; //no of elements in LeftArray
      int n2 = right - mid;     //no of elements in RightArray    
      int LeftArray[n1], RightArray[n2];
      for(int i=0; i < n1; i++)
       { 
         LeftArray[i] = Array[left + i];
       }
      for(int i=0; i < n2; i++)
       { 
         RightArray[i] = Array[mid + i + 1];
       }

      // In below section x, y and z represents index number
      // of LeftArray, RightArray and Array respectively
      int x=0, y=0, z=left;
      while(x < n1 && y < n2)
      {
        if(LeftArray[x] < RightArray[y])
           { 
              Array[z] = LeftArray[x]; 
              x++; 
           }
        else
           { 
             Array[z] = RightArray[y];  
             y++; 
           }
        z++;
      }
      // Copying the remaining elements of LeftArray
      while(x < n1)
      { 
         Array[z] = LeftArray[x];  
         x++;  z++;
      }
      // Copying the remaining elements of RightArray
      while(y < n2)
      { 
        Array[z] = RightArray[y]; 
        y++;  z++; 
      }
  }

  // function to print array
  static void PrintArray(int Array[], int n) 
  { 
    for (int i=0; i<n; i++) 
    {  
      printf("%i ",Array[i]); 
    }
    printf("\n"); 
  } 

 // test merge sort code
 int main (){
    int MyArray[] = {10, 1, 23, 50, 4, 9, -4};
    int n = sizeof(MyArray) / sizeof(MyArray[0]); 
    printf("Original Array\n");
    PrintArray(MyArray, n);

    mergesort(MyArray, 0, n-1);
    printf("\nSorted Array\n");
    PrintArray(MyArray, n);
    return 0;
 }

Output

Original Array
10 1 23 50 4 9 -4 

Sorted Array
-4 1 4 9 10 23 50 



using System;

namespace MyApplication { 
   class MyProgram {
      // function for merge sort - splits the array 
      // and call merge function to sort and merge the array
      // mergesort is a recursive function
      static void mergesort(int[] Array, int left, int right) 
      {
        if (left < right)
        { 
          int mid = left + (right - left)/2;
          mergesort(Array, left, mid);
          mergesort(Array, mid+1, right);
          merge(Array, left, mid, right);
        }
      }

      // merge function performs sort and merge operations
      // for mergesort function
      static void merge(int[] Array, int left, int mid, int right) 
      {
          // Create two temporary array to hold splitted 
          // elements of main array 
          int n1 = mid - left + 1; //no of elements in LeftArray
          int n2 = right - mid;     //no of elements in RightArray    
          int[] LeftArray = new int [n1]; 
          int[] RightArray = new int [n2];
          for(int i=0; i < n1; i++)
           { 
             LeftArray[i] = Array[left + i];
           }
          for(int i=0; i < n2; i++)
           { 
             RightArray[i] = Array[mid + i + 1];
           }

        // In below section x, y and z represents index number
        // of LeftArray, RightArray and Array respectively
        int x=0, y=0, z=left;
        while(x < n1 && y < n2)
        {
          if(LeftArray[x] < RightArray[y])
             { 
                Array[z] = LeftArray[x]; 
                x++; 
             }
          else
             { 
               Array[z] = RightArray[y];  
               y++; 
             }
          z++;
        }
        // Copying the remaining elements of LeftArray
        while(x < n1)
        { 
           Array[z] = LeftArray[x];  
           x++;  z++;
        }
        // Copying the remaining elements of RightArray
        while(y < n2)
        { 
          Array[z] = RightArray[y]; 
          y++;  z++; 
        }
    }

     // function to print array
     static void PrintArray(int[] Array) 
     { 
        int n = Array.Length; 
        for (int i=0; i<n; i++) 
        {  
          Console.Write(Array[i] + " "); 
        }
        Console.Write("\n"); 
     } 
 
    // test merge sort code
    static void Main(string[] args) {
     int[] MyArray = {10, 1, 23, 50, 4, 9, -4};
     int n = MyArray.Length;
     Console.Write("Original Array\n");
     PrintArray(MyArray);

     mergesort(MyArray, 0, n-1);
     Console.Write("\nSorted Array\n");
     PrintArray(MyArray);  
    }
  }
}

Output

Original Array
10 1 23 50 4 9 -4 

Sorted Array
-4 1 4 9 10 23 50

Time Complexity:

In all cases (worst, average and best), merge sort always divides the array until all sub-arrays contains single element and takes linear time to merge those sub-arrays. Dividing process has time complexity O(LogN) and merging process has time complexity O(N). Therefore, in all cases, the time complexity of merge sort is O(NLogN).


Previous Page Next Page