Pandas Series - sub() function
The Pandas sub() function returns subtraction of series and other, element-wise. It is equivalent to series - other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
Series.sub(other, level=None, fill_value=None)
Parameters
other |
Required. Specify scalar value or Series. |
level |
Optional. Specify int or name to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful Series alignment. If data in both corresponding Series locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: Subtracting a scalar value to the Series
In the example below, the sub() function is used to subtract a scalar value from the given series.
import pandas as pd import numpy as np x = pd.Series([10, 20, 30, 40, 50]) print("The Series contains:") print(x) #subtracting 3 from the Series print("\nx.sub(3) returns:") print(x.sub(3))
The output of the above code will be:
The Series contains: 0 10 1 20 2 30 3 40 4 50 dtype: int64 x.sub(3) returns: 0 7 1 17 2 27 3 37 4 47 dtype: int64
Example: Subtracting two Series
A series can be subtracted from another series in the similar fashion. Consider the following example:
import pandas as pd import numpy as np x = pd.Series([10, np.NaN, 30, 40], index=['A', 'B', 'C', 'D']) y = pd.Series([1, 2, 3, np.NaN], index=['A', 'B', 'C', 'D']) print("The x contains:") print(x) print("\nThe y contains:") print(y) #subtracting y from x print("\nx.sub(y, fill_value=0) returns:") print(x.sub(y, fill_value=0))
The output of the above code will be:
The x contains: A 10.0 B NaN C 30.0 D 40.0 dtype: float64 The y contains: A 1.0 B 2.0 C 3.0 D NaN dtype: float64 x.sub(y, fill_value=0) returns: A 9.0 B -2.0 C 27.0 D 40.0 dtype: float64
Example: Subtracting columns in a DataDrame
The sub() function can be applied in a DataFrame to get the subtraction of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Total Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #subtracting 'Bonus' from 'Total Salary' column df['Salary'] = df['Total Salary'].sub(df['Bonus']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: Bonus Total Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 The DataFrame is: Bonus Total Salary Salary John 5 60 55 Marry 3 62 59 Sam 2 65 63 Jo 4 59 55
❮ Pandas Series - Functions