Pandas Series - std() function
The Pandas Series std() function returns the sample standard deviation of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None)
Parameters
axis |
Optional. Specify {0 or 'index'}. Specify axis for the function to be applied on. |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. A str specifies the level name. |
ddof |
Optional. Specify Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
Return Value
Returns scalar or Series if a level is specified.
Example: using std() on a Series
In the example below, the std() function is used to get the sample standard deviation of values of a given series.
import pandas as pd import numpy as np idx = pd.MultiIndex.from_arrays([ ['even', 'even', 'even', 'odd', 'odd', 'odd']], names=['DataType']) x = pd.Series([10, 20, 30, 5, 7, 9], name='Numbers', index=idx) print("The Series contains:") print(x) #std of all values in the series print("\nx.std() returns:") print(x.std()) #std of all values within given level print("\nx.std(level='DataType') returns:") print(x.std(level='DataType')) print("\nx.std(level=0) returns:") print(x.std(level=0))
The output of the above code will be:
The Series contains: DataType even 10 even 20 even 30 odd 5 odd 7 odd 9 Name: Numbers, dtype: int64 x.std() returns: 9.60728889958036 x.std(level='DataType') returns: DataType even 10.0 odd 2.0 Name: Numbers, dtype: float64 x.std(level=0) returns: DataType even 10.0 odd 2.0 Name: Numbers, dtype: float64
Example: using std() on selected series in a DataFrame
Similarly, the std() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #std of all values of 'Salary' series print("\ndf['Salary'].std() returns:") print(df["Salary"].std())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].std() returns: 2.6457513110645907
❮ Pandas Series - Functions