Pandas Series - shift() function
The Pandas Series shift() function shifts index by specified number of periods with an optional time freq.
When freq is not provided, then the function shifts the index without realigning the data. If freq is provided (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq.
Syntax
Series.shift(periods=1, freq=None, axis=0, fill_value)
Parameters
periods |
Optional. Specify the period to shift. It can be positive or negative. Default: 1 |
freq |
Optional. Specify a freqDateOffset, tseries.offsets, timedelta, or str. It is the offset to use from the tseries module or time rule (e.g. 'EOM'). If freq is specified then the index values are shifted but the data is not realigned. Default: None. |
axis |
Optional. Specify {0 or 'index', 1 or 'columns'}. If 0 or 'index', shift takes place in column direction. If 1 or 'columns', shift takes place in row direction. Default: 0 |
fill_value |
Optional. Specify the scalar value to use for newly introduced missing values. Default is self.dtype.na_value. |
Return Value
Returns the shifted input object.
Example: shift() example
In the example below, a DataFrame df is created. The shift() function is used to shift the data by specified number of periods.
import pandas as pd import numpy as np df = pd.DataFrame({ "ColA": [20, 15, 25, 32, 45], "ColB": [17, 23, 18, 33, 38], "ColC": [24, 27, 22, 37, 52]}, index=pd.date_range("2018-05-01", "2018-05-05") ) print("The DataFrame is:") print(df) #shifting by 1 period column-wise print("\ndf.shift() returns:") print(df.shift()) #shifting by 3 period column-wise print("\ndf.shift(3) returns:") print(df.shift(3)) #shifting by 1 period row-wise print("\ndf.shift(axis=1) returns:") print(df.shift(axis=1))
The output of the above code will be:
The DataFrame is: ColA ColB ColC 2018-05-01 20 17 24 2018-05-02 15 23 27 2018-05-03 25 18 22 2018-05-04 32 33 37 2018-05-05 45 38 52 df.shift() returns: ColA ColB ColC 2018-05-01 NaN NaN NaN 2018-05-02 20.0 17.0 24.0 2018-05-03 15.0 23.0 27.0 2018-05-04 25.0 18.0 22.0 2018-05-05 32.0 33.0 37.0 df.shift(3) returns: ColA ColB ColC 2018-05-01 NaN NaN NaN 2018-05-02 NaN NaN NaN 2018-05-03 NaN NaN NaN 2018-05-04 20.0 17.0 24.0 2018-05-05 15.0 23.0 27.0 df.shift(axis=1) returns: ColA ColB ColC 2018-05-01 NaN 20 17 2018-05-02 NaN 15 23 2018-05-03 NaN 25 18 2018-05-04 NaN 32 33 2018-05-05 NaN 45 38
Example: using fill_value parameter
By using fill_value parameter, we can specify the scalar value to fill for newly introduced missing values. Consider the example below:
import pandas as pd import numpy as np df = pd.DataFrame({ "ColA": [20, 15, 25, 32, 45], "ColB": [17, 23, 18, 33, 38], "ColC": [24, 27, 22, 37, 52]}, index=pd.date_range("2018-05-01", "2018-05-05") ) print("The DataFrame is:") print(df) #shifting by 3 period column-wise print("\ndf.shift(3) returns:") print(df.shift(3)) #shifting by 3 period column-wise #with fill_value as 0 print("\ndf.shift(3, fill_value=0) returns:") print(df.shift(3, fill_value=0))
The output of the above code will be:
The DataFrame is: ColA ColB ColC 2018-05-01 20 17 24 2018-05-02 15 23 27 2018-05-03 25 18 22 2018-05-04 32 33 37 2018-05-05 45 38 52 df.shift(3) returns: ColA ColB ColC 2018-05-01 NaN NaN NaN 2018-05-02 NaN NaN NaN 2018-05-03 NaN NaN NaN 2018-05-04 20.0 17.0 24.0 2018-05-05 15.0 23.0 27.0 df.shift(3, fill_value=0) returns: ColA ColB ColC 2018-05-01 0 0 0 2018-05-02 0 0 0 2018-05-03 0 0 0 2018-05-04 20 17 24 2018-05-05 15 23 27
Example: using freq parameter
By using freq parameter, we can shift the index by specified number of periods and the freq. Consider the example below:
import pandas as pd import numpy as np df = pd.DataFrame({ "ColA": [20, 15, 25, 32, 45], "ColB": [17, 23, 18, 33, 38], "ColC": [24, 27, 22, 37, 52]}, index=pd.date_range("2018-05-01", "2018-05-05") ) print("The DataFrame is:") print(df) #shifting the index by 3 periods using freq='D' print("\ndf.shift(periods=3, freq='D') returns:") print(df.shift(periods=3, freq='D')) #shifting the index by 3 periods using freq='infer' print("\ndf.shift(periods=3, freq='infer') returns:") print(df.shift(periods=3, freq='D'))
The output of the above code will be:
The DataFrame is: ColA ColB ColC 2018-05-01 20 17 24 2018-05-02 15 23 27 2018-05-03 25 18 22 2018-05-04 32 33 37 2018-05-05 45 38 52 df.shift(periods=3, freq='D') returns: ColA ColB ColC 2018-05-04 20 17 24 2018-05-05 15 23 27 2018-05-06 25 18 22 2018-05-07 32 33 37 2018-05-08 45 38 52 df.shift(periods=3, freq='infer') returns: ColA ColB ColC 2018-05-04 20 17 24 2018-05-05 15 23 27 2018-05-06 25 18 22 2018-05-07 32 33 37 2018-05-08 45 38 52
❮ Pandas Series - Functions