Pandas Series - product() function
The Pandas Series product() function returns the product of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
Series.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0)
Parameters
axis |
Optional. Specify {0 or 'index'}. Specify axis for the function to be applied on. |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
min_count |
Optional. Specify required number of valid values to perform the operation. If the count of non-NA values is less than the min_count, the result will be NA. |
Return Value
Returns scalar or Series if a level is specified.
Example: using product() on a Series
In the example below, the product() function is used to get the product of values of a given series.
import pandas as pd import numpy as np idx = pd.MultiIndex.from_arrays([ ['Sample1', 'Sample1', 'Sample1', 'Sample2', 'Sample2', 'Sample2']], names=['DataType']) x = pd.Series([1, 2, 3, 11, 12, 13], name='Numbers', index=idx) print("The Series contains:") print(x) #product of all values in the series print("\nx.product() returns:") print(x.product()) #product of all values within given level print("\nx.product(level='DataType') returns:") print(x.product(level='DataType')) print("\nx.product(level=0) returns:") print(x.product(level=0))
The output of the above code will be:
The Series contains: DataType Sample1 1 Sample1 2 Sample1 3 Sample2 11 Sample2 12 Sample2 13 Name: Numbers, dtype: int64 x.product() returns: 10296 x.product(level='DataType') returns: DataType Sample1 6 Sample2 1716 Name: Numbers, dtype: int64 x.product(level=0) returns: DataType Sample1 6 Sample2 1716 Name: Numbers, dtype: int64
Example: using product() on selected series in a DataFrame
Similarly, the product() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Sample1": [1, 2, 3, 4, 5], "Sample2": [11, 12, 13, 14, 15], "Sample3": [9, 8, 7, 6, 5]}, index= ["x1", "x2", "x3", "x4", "x5"] ) print("The DataFrame is:") print(df) #product of values of 'Sample3' series print("\ndf['Sample3'].product() returns:") print(df["Sample3"].product())
The output of the above code will be:
The DataFrame is: Sample1 Sample2 Sample3 x1 1 11 9 x2 2 12 8 x3 3 13 7 x4 4 14 6 x5 5 15 5 df['Sample3'].product() returns: 15120
❮ Pandas Series - Functions