Pandas Series - mul() function
The Pandas mul() function returns multiplication of series and other, element-wise. It is equivalent to series * other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
Series.mul(other, level=None, fill_value=None)
Parameters
other |
Required. Specify scalar value or Series. |
level |
Optional. Specify int or name to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful Series alignment. If data in both corresponding Series locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: Multiplying th Series with a scalar value
In the example below, the mul() function is used to multiply the given series with a scalar value.
import pandas as pd import numpy as np x = pd.Series([10, 20, 30, 40, 50]) print("The Series contains:") print(x) #multiplying the Series with 3 print("\nx.mul(3) returns:") print(x.mul(3))
The output of the above code will be:
The Series contains: 0 10 1 20 2 30 3 40 4 50 dtype: int64 x.mul(3) returns: 0 30 1 60 2 90 3 120 4 150 dtype: int64
Example: Multiplying two Series
A series can be multiplied with another series in the similar fashion. Consider the following example:
import pandas as pd import numpy as np x = pd.Series([10, np.NaN, 30, 40], index=['A', 'B', 'C', 'D']) y = pd.Series([1, 2, 3, np.NaN], index=['A', 'B', 'C', 'D']) print("The x contains:") print(x) print("\nThe y contains:") print(y) #multiplying two Series print("\nx.mul(y, fill_value=0) returns:") print(x.mul(y, fill_value=0))
The output of the above code will be:
The x contains: A 10.0 B NaN C 30.0 D 40.0 dtype: float64 The y contains: A 1.0 B 2.0 C 3.0 D NaN dtype: float64 x.mul(y, fill_value=0) returns: A 10.0 B 0.0 C 90.0 D 0.0 dtype: float64
Example: Multiplying columns in a DataDrame
The mul() function can be applied in a DataFrame to get the multiplication of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "%Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #multiplying '%Bonus' with 'Salary' column df['Bonus'] = df['Salary'].mul(df['%Bonus']/100) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: %Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 The DataFrame is: %Bonus Salary Bonus John 5 60 3.00 Marry 3 62 1.86 Sam 2 65 1.30 Jo 4 59 2.36
❮ Pandas Series - Functions