Pandas Series - kurt() function
The Pandas Series kurt() function returns the unbiased kurtosis over the specified axis. The syntax for using this function is mentioned below:
Syntax
Series.kurt(axis=None, skipna=None, level=None, numeric_only=None)
Parameters
axis |
Optional. Specify {0 or 'index'}. Specify axis for the function to be applied on. |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
Return Value
Returns scalar or Series if a level is specified.
Example: using kurt() on a Series
In the example below, the kurt() function is used to get the kurtosis of a given series.
import pandas as pd import numpy as np idx = pd.MultiIndex.from_arrays([ ['rand', 'rand', 'rand', 'rand', 'randn', 'randn', 'randn', 'randn']], names=['DataType']) x = pd.Series(np.append(np.random.rand(4), np.random.randn(4)), index=idx) print("The Series contains:") print(x) #kurtosis of all values in the series print("\nx.kurt() returns:") print(x.kurt()) #kurtosis of all values within given level print("\nx.kurt(level='DataType') returns:") print(x.kurt(level='DataType')) print("\nx.kurt(level=0) returns:") print(x.kurt(level=0))
The output of the above code will be:
The Series contains: DataType rand 0.030591 rand 0.183242 rand 0.687058 rand 0.277481 randn -0.288712 randn -0.878824 randn -1.572509 randn -0.948994 dtype: float64 x.kurt() returns: -0.7767795767460655 x.kurt(level='DataType') returns: DataType rand 1.923868 randn 1.416024 dtype: float64 x.kurt(level=0) returns: DataType rand 1.923868 randn 1.416024 dtype: float64
Example: using kurt() on selected series in a DataFrame
Similarly, the kurt() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #kurtosis of all values of 'Salary' series print("\ndf['Salary'].kurt() returns:") print(df["Salary"].kurt())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].kurt() returns: -0.2857142857142865
❮ Pandas Series - Functions