Pandas Series - ge() function
The Pandas ge() function compares series and other, element-wise for greater than equal to and returns the comparison result. It is equivalent to series >= other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
Series.ge(other, level=None, fill_value=None)
Parameters
other |
Required. Specify scalar value or Series. |
level |
Optional. Specify int or name to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful Series alignment. If data in both corresponding Series locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the comparison.
Example: Comparing Series with a scalar value
In the example below, the ge() function is used to compare a Series with a given scalar value.
import pandas as pd import numpy as np x = pd.Series([10, 20, 30, 40, 50]) print("The Series contains:") print(x) #comparing Series >= 30 print("\nx.ge(30) returns:") print(x.ge(30))
The output of the above code will be:
The Series contains: 0 10 1 20 2 30 3 40 4 50 dtype: int64 x.ge(30) returns: 0 False 1 False 2 True 3 True 4 True dtype: bool
Example: Comparing Series with a Series
A series can be compared with another series element-wise for greater than equal to of. Consider the following example:
import pandas as pd import numpy as np x = pd.Series([10, np.NaN, 30, 40, 50], index=['A', 'B', 'C', 'D', 'E']) y = pd.Series([5, 20, 30, np.NaN, 65], index=['A', 'B', 'C', 'D', 'E']) print("The x contains:") print(x) print("\nThe y contains:") print(y) #calculating x >= y print("\nx.ge(y, fill_value=0) returns:") print(x.ge(y, fill_value=0))
The output of the above code will be:
The x contains: A 10.0 B NaN C 30.0 D 40.0 E 50.0 dtype: float64 The y contains: A 5.0 B 20.0 C 30.0 D NaN E 65.0 dtype: float64 x.ge(y, fill_value=0) returns: A True B False C True D True E False dtype: bool
Example: using ge() on columns of a DataDrame
The ge() function can be applied in a DataFrame to get the result of comparing for greater than equal to of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "col1": [10, 20, 30, 40, 50], "col2": [5, 15, 30, 45, 55] }) print("The DataFrame is:") print(df) #calculating 'col1' >= 'col2' df['Result'] = df['col1'].ge(df['col2']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: col1 col2 0 10 5 1 20 15 2 30 30 3 40 45 4 50 55 The DataFrame is: col1 col2 Result 0 10 5 True 1 20 15 True 2 30 30 True 3 40 45 False 4 50 55 False
❮ Pandas Series - Functions