Pandas Series - drop_duplicates() function
The Pandas Series drop_duplicates() function returns Series with duplicate values removed.
Syntax
Series.drop_duplicates(keep='first', inplace=False)
Parameters
keep |
Optional. Determines which duplicates (if any) to keep. Possible values are:
|
inplace |
Optional. If True, performs operation in place and returns None. |
Return Value
Returns Series with duplicates dropped or None if inplace=True.
Example: drop_duplicates() example
In the example below, the drop_duplicates() function is used to drop duplicate values from a given Series.
import pandas as pd import numpy as np x = pd.Series(['UK', 'USA', 'UK', 'FRA', 'USA', 'JPN']) print("The Series contains:") print(x, "\n") #removes duplicate values print("x.drop_duplicates() returns:") print(x.drop_duplicates(),"\n")
The output of the above code will be:
The Series contains: 0 UK 1 USA 2 UK 3 FRA 4 USA 5 JPN dtype: object x.drop_duplicates() returns: 0 UK 1 USA 3 FRA 5 JPN dtype: object
Example: using keep parameter
By using keep parameter, we can specify which duplicate value to keep. Consider the example below:
import pandas as pd import numpy as np x = pd.Series(['UK', 'USA', 'UK', 'FRA', 'USA', 'JPN']) print("The Series contains:") print(x, "\n") #keeping first duplicate value print("x.drop_duplicates(keep='first') returns:") print(x.drop_duplicates(keep='first'),"\n") #keeping last duplicate value print("x.drop_duplicates(keep='last') returns:") print(x.drop_duplicates(keep='last'),"\n")
The output of the above code will be:
The Series contains: 0 UK 1 USA 2 UK 3 FRA 4 USA 5 JPN dtype: object x.drop_duplicates(keep='first') returns: 0 UK 1 USA 3 FRA 5 JPN dtype: object x.drop_duplicates(keep='last') returns: 2 UK 3 FRA 4 USA 5 JPN dtype: object
Example: using inplace parameter
By using inplace parameter, the duplicate values can be replaced in place from the Series. Consider the example below:
import pandas as pd import numpy as np x = pd.Series(['UK', 'USA', 'UK', 'FRA', 'USA', 'JPN']) print("The Series contains:") print(x, "\n") #removing duplicates in place x.drop_duplicates(inplace=True) print("The Series contains:") print(x, "\n")
The output of the above code will be:
The Series contains: 0 UK 1 USA 2 UK 3 FRA 4 USA 5 JPN dtype: object The Series contains: 0 UK 1 USA 3 FRA 5 JPN dtype: object
❮ Pandas Series - Functions