Pandas Series - corr() function
The Pandas Series corr() function computes correlation of a Series with other Series, excluding missing values. Both NA and null values are automatically excluded from the calculation.
Syntax
Series.corr(other, method='pearson', min_periods=None)
Parameters
other |
Required. Specify a Series with which to compute the correlation. |
method |
Optional. Specify method of correlation. Default is 'pearson'. Possible values are:
|
min_periods |
Optional. An int to specify minimum number of observations required to have a valid result. |
Return Value
Returns correlation with other.
Example: using corr() on a Series
In the example below, the corr() function is used to calculate the correlation of given series.
import pandas as pd import numpy as np GDP = pd.Series([1.02, 1.03, 1.04, 0.98]) HDI = pd.Series([1.02, 1.01, 1.02, 1.03]) print("The GDP contains:") print(GDP, "\n") print("The HDI contains:") print(HDI, "\n") #calculating correlation print("GDP.corr(HDI) returns:") print(GDP.corr(HDI))
The output of the above code will be:
The GDP contains: 0 1.02 1 1.03 2 1.04 3 0.98 dtype: float64 The HDI contains: 0 1.02 1 1.01 2 1.02 3 1.03 dtype: float64 GDP.corr(HDI) returns: -0.776150525706333
Example: using corr() on selected series in a DataFrame
Similarly, the corr() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "GDP": [1.02, 1.03, 1.04, 0.98], "GNP": [1.05, 0.99, np.nan, 1.04], "HDI": [1.02, 1.01, 1.02, 1.03], "Agriculture": [1.02, 1.02, 0.99, 0.98]}, index= ["Q1", "Q2", "Q3", "Q4"] ) print("The DataFrame is:") print(df) #correlation matrix using GDP and HDI series print("\ndf['GDP'].corr(df['HDI']) returns:") print(df['GDP'].corr(df['HDI']))
The output of the above code will be:
The DataFrame is: GDP GNP HDI Agriculture Q1 1.02 1.05 1.02 1.02 Q2 1.03 0.99 1.01 1.02 Q3 1.04 NaN 1.02 0.99 Q4 0.98 1.04 1.03 0.98 df['GDP'].corr(df['HDI']) returns: -0.776150525706333
❮ Pandas Series - Functions