Pandas Series - add() function
The Pandas add() function returns addition of series and other, element-wise. It is equivalent to series + other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
Series.add(other, level=None, fill_value=None)
Parameters
other |
Required. Specify scalar value or Series. |
level |
Optional. Specify int or name to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful Series alignment. If data in both corresponding Series locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: Adding a scalar value to the Series
In the example below, the add() function is used to add a scalar value to the given series.
import pandas as pd import numpy as np x = pd.Series([10, 20, 30, 40, 50]) print("The Series contains:") print(x) #adding 3 to the Series print("\nx.add(3) returns:") print(x.add(3))
The output of the above code will be:
The Series contains: 0 10 1 20 2 30 3 40 4 50 dtype: int64 x.add(3) returns: 0 13 1 23 2 33 3 43 4 53 dtype: int64
Example: Adding two Series
A series can be added to another series in the similar fashion. Consider the following example:
import pandas as pd import numpy as np x = pd.Series([10, np.NaN, 30, 40], index=['A', 'B', 'C', 'D']) y = pd.Series([1, 2, 3, np.NaN], index=['A', 'B', 'C', 'D']) print("The x contains:") print(x) print("\nThe y contains:") print(y) #adding two Series print("\nx.add(y, fill_value=0) returns:") print(x.add(y, fill_value=0))
The output of the above code will be:
The x contains: A 10.0 B NaN C 30.0 D 40.0 dtype: float64 The y contains: A 1.0 B 2.0 C 3.0 D NaN dtype: float64 x.add(y, fill_value=0) returns: A 11.0 B 2.0 C 33.0 D 40.0 dtype: float64
Example: Adding columns in a DataDrame
The add() function can be applied in a DataFrame to get the addition of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #adding 'Bonus' and 'Salary' column df['Total Salary'] = df['Salary'].add(df['Bonus']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 The DataFrame is: Bonus Salary Total Salary John 5 60 65 Marry 3 62 65 Sam 2 65 67 Jo 4 59 63
❮ Pandas Series - Functions