Pandas DataFrame - sum() function
The Pandas DataFrame sum() function returns the sum of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0)
Parameters
axis |
Optional. Specify {0 or 'index', 1 or 'columns'}. If 0 or 'index', sums are generated for each column. If 1 or 'columns', sums are generated for each row. Default: 0 |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
min_count |
Optional. Specify required number of valid values to perform the operation. If the count of non-NA values is less than the min_count, the result will be NA. |
Return Value
Returns sum of Series or DataFrame if a level is specified.
Example: using sum() column-wise on whole DataFrame
In the example below, a DataFrame df is created. The sum() function is used to get the sum of each column.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Sum of all entries column-wise print("\ndf.sum() returns:") print(df.sum())
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.sum() returns: Bonus 14 Salary 246 dtype: int64
Example: using sum() row-wise on whole DataFrame
To perform the operation row-wise, the axis parameter can be set to 1.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Sum of all entries row-wise print("\ndf.sum(axis=1) returns:") print(df.sum(axis=1))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.sum(axis=1) returns: John 65 Marry 65 Sam 67 Jo 63 dtype: int64
Example: using sum() on selected column
Instead of whole DataFrame, the sum() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #sum of single column print("\ndf['Salary'].sum() returns:") print(df["Salary"].sum()) #sum of multiple columns print("\ndf[['Salary', 'Bonus']].sum() returns:") print(df[["Salary", "Bonus"]].sum())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].sum() returns: 246 df[['Salary', 'Bonus']].sum() returns: Salary 246 Bonus 14 dtype: int64
❮ Pandas DataFrame - Functions