Pandas DataFrame - pow() function
The Pandas pow() function returns exponential power of dataframe and other, element-wise. It is equivalent to dataframe ** other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
DataFrame.pow(other, axis='columns', level=None, fill_value=None)
Parameters
other |
Required. Specify any single or multiple element data structure, or list-like object. |
axis |
Optional. Specify whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. Default is 'columns'. |
level |
Optional. Specify int or label to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment. If data in both corresponding DataFrame locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: using pow() on whole DataFrame
In the example below, a DataFrame df is created. The pow() function is used to calculate the square of the whole DataFrame.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Squaring all entries of the DataFrame print("\ndf.pow(2) returns:") print(df.pow(2))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.pow(2) returns: Bonus Salary John 25 3600 Marry 9 3844 Sam 4 4225 Jo 16 3481
Example: Different exponent for different column
Different exponent can be used for different column by providing other argument as a list. Consider the following example:
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Cubing all entries of Bonus column #Squaring all entries of Salary column print("\ndf.pow([3,2]) returns:") print(df.pow([3,2]))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.pow([3,2]) returns: Bonus Salary John 125 3600 Marry 27 3844 Sam 8 4225 Jo 64 3481
Example: using pow() on selected columns
Instead of whole DataFrame, the pow() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Squaring all entries of Salary column print("\ndf['Salary'].pow(2) returns:") print(df["Salary"].pow(2)) #Cubing all entries of Bonus column #Squaring all entries of Salary column print("\ndf[['Salary', 'Bonus']].pow([2,3]) returns:") print(df[["Salary", "Bonus"]].pow([2,3]))
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].pow(2) returns: John 3600 Marry 3844 Sam 4225 Jo 3481 Name: Salary, dtype: int64 df[['Salary', 'Bonus']].pow([2,3]) returns: Salary Bonus John 3600 125 Marry 3844 27 Sam 4225 8 Jo 3481 64
Example: Calculating pow() using columns of a DataDrame
The pow() function can be applied in a DataFrame to get the exponential of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Base": [10, 20, 30, 40, 50], "Exponent": [1.1, 1.2, 1.3, 1.4, 1.5] }) print("The DataFrame is:") print(df) #calculating 'Base' raised to the power of 'Exponent' df['Result'] = df['Base'].pow(df['Exponent']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: Base Exponent 0 10 1.1 1 20 1.2 2 30 1.3 3 40 1.4 4 50 1.5 The DataFrame is: Base Exponent Result 0 10 1.1 12.589254 1 20 1.2 36.411284 2 30 1.3 83.225733 3 40 1.4 174.937932 4 50 1.5 353.553391
❮ Pandas DataFrame - Functions