Pandas DataFrame - mul() function
The Pandas mul() function returns multiplication of dataframe and other, element-wise. It is equivalent to dataframe * other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
DataFrame.mul(other, axis='columns', level=None, fill_value=None)
Parameters
other |
Required. Specify any single or multiple element data structure, or list-like object. |
axis |
Optional. Specify whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. Default is 'columns'. |
level |
Optional. Specify int or label to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment. If data in both corresponding DataFrame locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: using mul() on whole DataFrame
In the example below, a DataFrame df is created. The mul() function is used to multiply the whole DataFrame by a given scalar value.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #multiplying all entries of the DataFrame by 2 print("\ndf.mul(2) returns:") print(df.mul(2))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mul(2) returns: Bonus Salary John 10 120 Marry 6 124 Sam 4 130 Jo 8 118
Example: Multiplying different column by different value
Different column can be multiplied by different scalar value by providing other argument as a list. Consider the following example:
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #multiplying all entries of Bonus column by 2 #multiplying all entries of Salary column by 10 print("\ndf.mul([2,10]) returns:") print(df.mul([2,10]))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mul([2,10]) returns: Bonus Salary John 10 600 Marry 6 620 Sam 4 650 Jo 8 590
Example: using mul() on selected columns
Instead of whole DataFrame, the mul() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #multiplying all entries of Salary column by 3 print("\ndf['Salary'].mul(3) returns:") print(df["Salary"].mul(3)) #multiplying all entries of Salary column by 3 #multiplying all entries of Bonus column by 2 print("\ndf[['Salary', 'Bonus']].mul([3,2]) returns:") print(df[["Salary", "Bonus"]].mul([3,2]))
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].mul(3) returns: John 180 Marry 186 Sam 195 Jo 177 Name: Salary, dtype: int64 df[['Salary', 'Bonus']].mul([3,2]) returns: Salary Bonus John 180 10 Marry 186 6 Sam 195 4 Jo 177 8
Example: Multiplying columns in a DataDrame
The mul() function can be applied in a DataFrame to get the multiplication of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "%Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #multiplying '%Bonus' to 'Salary' column df['Bonus'] = df['Salary'].mul(df['%Bonus']/100) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: %Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 The DataFrame is: %Bonus Salary Bonus John 5 60 3.00 Marry 3 62 1.86 Sam 2 65 1.30 Jo 4 59 2.36
❮ Pandas DataFrame - Functions