Pandas DataFrame - mod() function
The Pandas mod() function returns modulo of dataframe and other, element-wise. It is equivalent to dataframe % other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
DataFrame.mod(other, axis='columns', level=None, fill_value=None)
Parameters
other |
Required. Specify any single or multiple element data structure, or list-like object. |
axis |
Optional. Specify whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. Default is 'columns'. |
level |
Optional. Specify int or label to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment. If data in both corresponding DataFrame locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: using mod() on whole DataFrame
In the example below, a DataFrame df is created. The mod() function is used to calculate modulo of the whole DataFrame when divided by a given scalar value.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Modulo the DataFrame is divided by 2 print("\ndf.mod(2) returns:") print(df.mod(2))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mod(2) returns: Bonus Salary John 1 0 Marry 1 0 Sam 0 1 Jo 0 1
Example: using different scalar value for different column
Different column can be divided by different scalar value to calculate the modulo by providing other argument as a list. Consider the following example:
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Modulo when Bonus column is divided by 2 #Modulo when Salary column is divided by 10 print("\ndf.mod([2,10]) returns:") print(df.mod([2,10]))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mod([2,10]) returns: Bonus Salary John 1 0 Marry 1 2 Sam 0 5 Jo 0 9
Example: using mod() on selected columns
Instead of whole DataFrame, the mod() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #Modulo when Salary column is divided by 3 print("\ndf['Salary'].mod(3) returns:") print(df["Salary"].mod(3)) #Modulo when Salary column is divided by 3 #Modulo when Bonus column is divided by 2 print("\ndf[['Salary', 'Bonus']].mod([3,2]) returns:") print(df[["Salary", "Bonus"]].mod([3,2]))
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].mod(3) returns: John 0 Marry 2 Sam 2 Jo 2 Name: Salary, dtype: int64 df[['Salary', 'Bonus']].mod([3,2]) returns: Salary Bonus John 0 1 Marry 2 1 Sam 2 0 Jo 2 0
Example: Dividing columns in a DataDrame
The mod() function can be applied in a DataFrame to get the modulo of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Dividend": [10, 20, 30, 40, 50], "Divisor": [5, 6, 7, 8, 9] }) print("The DataFrame is:") print(df) #dividing 'Dividend' by 'Divisor' column df['Remainder'] = df['Dividend'].mod(df['Divisor']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: Dividend Divisor 0 10 5 1 20 6 2 30 7 3 40 8 4 50 9 The DataFrame is: Dividend Divisor Remainder 0 10 5 0 1 20 6 2 2 30 7 2 3 40 8 0 4 50 9 5
❮ Pandas DataFrame - Functions