Pandas DataFrame - mean() function
The Pandas DataFrame mean() function returns the mean of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None)
Parameters
axis |
Optional. Specify {0 or 'index', 1 or 'columns'}. If 0 or 'index', mean of the values are generated for each column. If 1 or 'columns', mean of the values are generated for each row. Default: 0 |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
Return Value
Returns mean of the values of Series or DataFrame if a level is specified.
Example: using mean() column-wise on whole DataFrame
In the example below, a DataFrame df is created. The mean() function is used to get the mean of values for each column.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #mean of values of all entries column-wise print("\ndf.mean() returns:") print(df.mean())
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mean() returns: Bonus 3.5 Salary 61.5 dtype: float64
Example: using mean() row-wise on whole DataFrame
To perform the operation row-wise, the axis parameter can be set to 1.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #mean of values of all entries row-wise print("\ndf.mean(axis=1) returns:") print(df.mean(axis=1))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.mean(axis=1) returns: John 32.5 Marry 32.5 Sam 33.5 Jo 31.5 dtype: float64
Example: using mean() on selected column
Instead of whole DataFrame, the mean() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #mean of values of single column print("\ndf['Salary'].mean() returns:") print(df["Salary"].mean()) #mean of values of multiple columns print("\ndf[['Salary', 'Bonus']].mean() returns:") print(df[["Salary", "Bonus"]].mean())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].mean() returns: 61.5 df[['Salary', 'Bonus']].mean() returns: Salary 61.5 Bonus 3.5 dtype: float64
❮ Pandas DataFrame - Functions