Pandas DataFrame - max() function
The Pandas DataFrame max() function returns the maximum of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None)
Parameters
axis |
Optional. Specify {0 or 'index', 1 or 'columns'}. If 0 or 'index', maximum of the values are generated for each column. If 1 or 'columns', maximum of the values are generated for each row. Default: 0 |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
Return Value
Returns maximum of the values of Series or DataFrame if a level is specified.
Example: using max() column-wise on whole DataFrame
In the example below, a DataFrame df is created. The max() function is used to get the maximum of values for each column.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #maximum of values of all entries column-wise print("\ndf.max() returns:") print(df.max())
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.max() returns: Bonus 5 Salary 65 dtype: int64
Example: using max() row-wise on whole DataFrame
To perform the operation row-wise, the axis parameter can be set to 1.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #maximum of values of all entries row-wise print("\ndf.max(axis=1) returns:") print(df.max(axis=1))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.max(axis=1) returns: John 60 Marry 62 Sam 65 Jo 59 dtype: int64
Example: using max() on selected column
Instead of whole DataFrame, the max() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #maximum of values of single column print("\ndf['Salary'].max() returns:") print(df["Salary"].max()) #maximum of values of multiple columns print("\ndf[['Salary', 'Bonus']].max() returns:") print(df[["Salary", "Bonus"]].max())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].max() returns: 65 df[['Salary', 'Bonus']].max() returns: Salary 65 Bonus 5 dtype: int64
❮ Pandas DataFrame - Functions