Pandas DataFrame - le() function
The Pandas le() function compares dataframe and other, element-wise for less than equal to and returns the comparison result. It is equivalent to dataframe <= other, but with support to choose axis (rows or columns) and level for comparison.
Syntax
DataFrame.le(other, axis='columns', level=None)
Parameters
other |
Required. Specify any single or multiple element data structure, or list-like object. |
axis |
Optional. Specify whether to compare by the index (0 or 'index') or columns (1 or 'columns'). |
level |
Optional. Specify int or label to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
Return Value
Returns the result of the comparison.
Example: using le() on whole DataFrame
In the example below, a DataFrame df is created. The le() function is used to compare this DataFrame with a given scalar value.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #comparing for less than equal to for #all entries of the DataFrame by 4 print("\ndf.le(4) returns:") print(df.le(4))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.le(4) returns: Bonus Salary John False False Marry True False Sam True False Jo True False
Example: Comparing different column with different value
Different column can be compared with different scalar value by providing other argument as a list. Consider the following example:
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #comparing all entries of Bonus column by 4 #comparing all entries of Salary column by 62 print("\ndf.le([4,62]) returns:") print(df.le([4,62]))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.le([4,62]) returns: Bonus Salary John False True Marry True True Sam True False Jo True True
Example: using le() on selected columns
Instead of whole DataFrame, the le() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #comparing all entries of Salary column by 62 print("\ndf['Salary'].le(62) returns:") print(df["Salary"].le(62)) #comparing all entries of Bonus column by 4 #comparing all entries of Salary column by 62 print("\ndf[['Salary', 'Bonus']].le([62,4]) returns:") print(df[["Salary", "Bonus"]].le([62,4]))
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].le(62) returns: John True Marry True Sam False Jo True Name: Salary, dtype: bool df[['Salary', 'Bonus']].le([62,4]) returns: Salary Bonus John True False Marry True True Sam False True Jo True True
Example: using le() on columns of a DataDrame
The le() function can be applied in a DataFrame to get the result of comparing for less than equal to of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "col1": [10, 20, 30, 40, 50], "col2": [5, 15, 30, 45, 55] }) print("The DataFrame is:") print(df) #calculating 'col1' <= 'col2' df['Result'] = df['col1'].le(df['col2']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: col1 col2 0 10 5 1 20 15 2 30 30 3 40 45 4 50 55 The DataFrame is: col1 col2 Result 0 10 5 False 1 20 15 False 2 30 30 True 3 40 45 True 4 50 55 True
❮ Pandas DataFrame - Functions