Pandas DataFrame - floordiv() function
The Pandas floordiv() function returns integer division of dataframe and other, element-wise. It is equivalent to dataframe // other, but with support to substitute a fill_value for missing data as one of the parameters.
Syntax
DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)
Parameters
other |
Required. Specify any single or multiple element data structure, or list-like object. |
axis |
Optional. Specify whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. Default is 'columns'. |
level |
Optional. Specify int or label to broadcast across a level, matching Index values on the passed MultiIndex level. Default is None. |
fill_value |
Optional. Specify value to fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment. If data in both corresponding DataFrame locations is missing the result will be missing. Default is None. |
Return Value
Returns the result of the arithmetic operation.
Example: using floordiv() on whole DataFrame
In the example below, a DataFrame df is created. The floordiv() function is used to divide the whole DataFrame by a given scalar value.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #dividing all entries of the DataFrame by 2 print("\ndf.floordiv(2) returns:") print(df.floordiv(2))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.floordiv(2) returns: Bonus Salary John 2 30 Marry 1 31 Sam 1 32 Jo 2 29
Example: Dividing different column by different value
Different column can be divided by different scalar value by providing other argument as a list. Consider the following example:
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #dividing all entries of Bonus column by 2 #dividing all entries of Salary column by 10 print("\ndf.floordiv([2,10]) returns:") print(df.floordiv([2,10]))
The output of the above code will be:
The DataFrame is: Bonus Salary John 5 60 Marry 3 62 Sam 2 65 Jo 4 59 df.floordiv([2,10]) returns: Bonus Salary John 2 6 Marry 1 6 Sam 1 6 Jo 2 5
Example: using floordiv() on selected columns
Instead of whole DataFrame, the floordiv() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #dividing all entries of Salary column by 3 print("\ndf['Salary'].floordiv(3) returns:") print(df["Salary"].floordiv(3)) #dividing all entries of Salary column by 3 #dividing all entries of Bonus column by 2 print("\ndf[['Salary', 'Bonus']].floordiv([3,2]) returns:") print(df[["Salary", "Bonus"]].floordiv([3,2]))
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].floordiv(3) returns: John 20 Marry 20 Sam 21 Jo 19 Name: Salary, dtype: int64 df[['Salary', 'Bonus']].floordiv([3,2]) returns: Salary Bonus John 20 2 Marry 20 1 Sam 21 1 Jo 19 2
Example: Dividing columns in a DataDrame
The floordiv() function can be applied in a DataFrame to get the division of two series/column element-wise. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Dividend": [10, 20, 30, 40, 50], "Divisor": [5, 6, 7, 8, 9] }) print("The DataFrame is:") print(df) #dividing 'Dividend' by 'Divisor' column df['Quotient'] = df['Dividend'].floordiv(df['Divisor']) print("\nThe DataFrame is:") print(df)
The output of the above code will be:
The DataFrame is: Dividend Divisor 0 10 5 1 20 6 2 30 7 3 40 8 4 50 9 The DataFrame is: Dividend Divisor Quotient 0 10 5 2 1 20 6 3 2 30 7 4 3 40 8 5 4 50 9 5
❮ Pandas DataFrame - Functions