NumPy - vstack() function
The NumPy vstack() function stacks arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Syntax
numpy.vstack(tup)
Parameters
tup |
Required. Specify sequence of ndarrays to be vertically stacked. The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length. |
Return Value
Returns the array formed by stacking the given arrays.
Example:
In the example below, vstack() function is used to stack two given arrays.
import numpy as np Arr1 = np.array([[10,20],[30, 40]]) Arr2 = np.array([[50,60],[70, 80]]) #stacking arrays vertically Arr3 = np.vstack((Arr1, Arr2)) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3)
The output of the above code will be:
Arr1 is: [[10 20] [30 40]] Arr2 is: [[50 60] [70 80]] Arr3 is: [[10 20] [30 40] [50 60] [70 80]]
Example:
Consider one more example, where two arrays has same shape along all except different first axis.
import numpy as np Arr1 = np.array([10, 20, 30]) Arr2 = np.array([[40,50,60],[70,80,90]]) #stacking arrays vertically Arr3 = np.vstack((Arr1, Arr2)) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3)
The output of the above code will be:
Arr1 is: [10 20 30] Arr2 is: [[40 50 60] [70 80 90]] Arr3 is: [[10 20 30] [40 50 60] [70 80 90]]
❮ NumPy - Array Manipulation