NumPy - random.random() function
The NumPy random.random() function returns random values in a given shape. The function creates an array of the given shape and populate it with random samples drawn from continuous uniform distribution over [0, 1).
For generating random values from unif[a, b), b>a, the following relationship can be used:
(b-a) * np.random.random() + a
Syntax
numpy.random.random(size=None)
Parameters
size |
Optional. Specify output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. |
Return Value
Returns random values in a given shape (unless size=None, in which case a single float is returned).
Example:
In the example below, random.random() function is used to generate a single random value.
import numpy as np x = np.random.random() #printing the random number print("x =", x)
The output of the above code will be:
x = 0.22076149806948886
Example:
In the example below, the function is used to generate random values in the specified shape.
import numpy as np #creating an array of given size #filled with random numbers x = np.random.random((5, 3)) #printing x print(x)
The output of the above code will be:
[[0.83427982 0.14928282 0.63731192] [0.65008078 0.18633094 0.18742767] [0.61075212 0.01129346 0.11458491] [0.99085745 0.28475412 0.19810717] [0.51604249 0.42201909 0.09791535]]
Example:
By using (b-a) * np.random.random() + a relationship, we can define the uniform distribution to the draw the sample from.
import numpy as np #creating an array of given size filled with #random numbers drawn from [10, 20) x = (20-10) * np.random.random((5, 3)) + 10 #printing x print(x)
The output of the above code will be:
[[14.5350012 11.50377783 13.98438303] [14.23121651 18.92345323 13.35319144] [18.98417555 18.79124236 18.35668005] [12.79211314 11.84763782 16.63781161] [11.86143982 19.85435164 13.33015107]]
❮ NumPy - Random