NumPy - random.randint() function
The NumPy random.randint() function returns random integers drawn from low (inclusive) to high (exclusive), in a given shape.
Syntax
numpy.random.randint(low, high=None, size=None, dtype='l')
Parameters
low |
Required. Specify lowest (signed) integer to be drawn from the distribution (unless high=None, in which case this parameter is one above the highest such integer). |
high |
Optional. If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None). |
size |
Optional. Specify output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. |
dtype |
Optional. Specify desired dtype of the result. |
Return Value
Returns random int values from the appropriate distribution in given shape, or a single such random int if size not provided.
Example:
In the example below, random.randint() function is used to generate random integers in a given shape. As high=None in this example, samples are drawn from [0, low).
import numpy as np x = np.random.randint(3, size=(10)) y = np.random.randint(3, size=(3, 3)) #printing x print("x =", x) #printing y print("y =") print(y)
The output of the above code will be:
x = [2 1 2 2 2 0 0 2 1 0] y = [[1 0 1] [0 0 0] [2 2 0]]
Example:
When high is provided, integer samples are drawn from [low, high).
import numpy as np x = np.random.randint(3, 10, (10)) y = np.random.randint(3, 10, (3, 3)) #printing x print("x =", x) #printing y print("y =") print(y)
The output of the above code will be:
x = [9 7 4 3 6 3 3 9 4 7] y = [[7 6 7] [4 6 8] [4 3 4]]
❮ NumPy - Random