NumPy - random.rand() function
The NumPy random.rand() function returns random values in a given shape. The function creates an array of the given shape and populate it with random samples drawn from continuous uniform distribution over [0, 1).
For generating random values from unif[a, b), b>a, the following relationship can be used:
(b-a) * np.random.rand() + a
Syntax
numpy.random.rand(d0, d1, ..., dn)
Parameters
d0, d1, ..., dn |
Optional. Specify dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned. |
Return Value
Returns random values in a given shape.
Example:
In the example below, random.rand() function is used to generate a single random value.
import numpy as np x = np.random.rand() #printing the random number print("x =", x)
The output of the above code will be:
x = 0.22076149806948886
Example:
In the example below, the function is used to generate random values in the specified shape.
import numpy as np #creating an array of given size #filled with random numbers x = np.random.rand(5, 3) #printing x print(x)
The output of the above code will be:
[[0.76503505 0.29506873 0.20241422] [0.66315398 0.54226745 0.11124589] [0.12117752 0.72995682 0.3798694 ] [0.45234472 0.67215523 0.90047342] [0.24848435 0.49199304 0.32012145]]
Example:
By using (b-a) * np.random.rand() + a relationship, we can define the uniform distribution to the draw the sample from.
import numpy as np #creating an array of given size filled with #random numbers drawn from [10, 20) x = (20-10) * np.random.rand(5, 3) + 10 #printing x print(x)
The output of the above code will be:
[[11.22009821 19.53731226 15.79550244] [15.08270698 11.23815332 17.25568115] [19.32902131 12.50019709 17.74865773] [11.4636353 14.04455759 10.08556483] [12.26902599 19.80255263 12.60528569]]
❮ NumPy - Random