NumPy - hstack() function
The NumPy hstack() function stacks arrays in sequence horizontally (column wise). This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis.
Syntax
numpy.hstack(tup)
Parameters
tup |
Required. Specify sequence of ndarrays to be horizontally stacked. The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. |
Return Value
Returns the array formed by stacking the given arrays.
Example:
In the example below, hstack() function is used to stack two given arrays.
import numpy as np Arr1 = np.array([[10,20],[30, 40]]) Arr2 = np.array([[50,60],[70, 80]]) #stacking arrays horizontally Arr3 = np.hstack((Arr1, Arr2)) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3)
The output of the above code will be:
Arr1 is: [[10 20] [30 40]] Arr2 is: [[50 60] [70 80]] Arr3 is: [[10 20 50 60] [30 40 70 80]]
Example:
Consider one more example, where two arrays has same shape along all except different second axis.
import numpy as np Arr1 = np.array([[10,20],[30, 40]]) Arr2 = np.array([[50,60,70],[80,90,100]]) #stacking arrays horizontally Arr3 = np.hstack((Arr1, Arr2)) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3)
The output of the above code will be:
Arr1 is: [[10 20] [30 40]] Arr2 is: [[ 50 60 70] [ 80 90 100]] Arr3 is: [[ 10 20 50 60 70] [ 30 40 80 90 100]]
❮ NumPy - Array Manipulation