NumPy - stack() function
The NumPy stack() function joins a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension.
Syntax
numpy.stack(arrays, axis=0, out=None)
Parameters
arrays |
Required. Specify arrays (array_like) to be stacked. Each array must have the same shape. |
axis |
Optional. Specify axis in the result array along which the input arrays are stacked. |
out |
Optional. Specify output array for the result. The default is None. If provided, it must have the same shape as output. |
Return Value
Returns the stacked array. It has one more dimension than the input arrays.
Example:
In the example below, stack() function is used to stack two given arrays.
import numpy as np Arr1 = np.array([[10,20],[30, 40]]) Arr2 = np.array([[50,60],[70, 80]]) #stacking arrays along axis=0 Arr3 = np.stack((Arr1, Arr2), axis=0) #stacking arrays along axis=1 Arr4 = np.stack((Arr1, Arr2), axis=1) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3) print("\nArr4 is:") print(Arr4)
The output of the above code will be:
Arr1 is: [[10 20] [30 40]] Arr2 is: [[50 60] [70 80]] Arr3 is: [[[10 20] [30 40]] [[50 60] [70 80]]] Arr4 is: [[[10 20] [50 60]] [[30 40] [70 80]]]
Example:
Consider one more example.
import numpy as np Arr1 = np.array([10, 20, 30]) Arr2 = np.array([40, 50, 60]) #stacking arrays along axis=0 Arr3 = np.stack((Arr1, Arr2), axis=0) #stacking arrays along axis=1 Arr4 = np.stack((Arr1, Arr2), axis=1) #displaying results print("Arr1 is:") print(Arr1) print("\nArr2 is:") print(Arr2) print("\nArr3 is:") print(Arr3) print("\nArr4 is:") print(Arr4)
The output of the above code will be:
Arr1 is: [10 20 30] Arr2 is: [40 50 60] Arr3 is: [[10 20 30] [40 50 60]] Arr4 is: [[10 40] [20 50] [30 60]]
❮ NumPy - Functions