NumPy - sort() function
The NumPy sort() function returns a sorted copy of the specified array.
Syntax
numpy.sort(a, axis=-1, kind=None, order=None)
Parameters
a |
Required. Specify the array (array_like) to be sorted. |
axis |
Optional. Specify the axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. |
kind |
Optional. Specify sorting algorithm. It can take values from {'quicksort', 'mergesort', 'heapsort', 'stable'}. Default: 'quicksort' |
order |
Optional. Specify string or list of strings containing fields. When a is an array with fields defined, this argument specifies the order in which the fields need to the compared. |
Return Value
Returns a sorted array (ndarray) of the same type and shape as a.
Example:
In the example below, sort() function is used to sort elements of a 2-D array. As the axis parameter is not provided, the sorting is done along the last axis (row-wise).
import numpy as np Arr = np.array([[1,20,5],[21, 4, 3],[11, 5, 50]]) SortedArr = np.sort(Arr) print("Original Array:") print(Arr) print("\nSorted Array:") print(SortedArr)
The output of the above code will be:
Original Array: [[ 1 20 5] [21 4 3] [11 5 50]] Sorted Array: [[ 1 5 20] [ 3 4 21] [ 5 11 50]]
Example: using sort() with axis parameter
To sort the array column-wise, axis parameter can be set to 0.
import numpy as np Arr = np.array([[1,20,5],[21, 4, 3],[11, 5, 50]]) SortedArr = np.sort(Arr, axis=0) print("Original Array:") print(Arr) print("\nSorted Array:") print(SortedArr)
The output of the above code will be:
Original Array: [[ 1 20 5] [21 4 3] [11 5 50]] Sorted Array: [[ 1 4 3] [11 5 5] [21 20 50]]
Example: using sort() with axis=None
When axis=None is used, the array is flattened before sorting as shown in the example below.
import numpy as np Arr = np.array([[1,20,5],[21, 4, 3],[11, 5, 50]]) SortedArr = np.sort(Arr, axis=None) print("Original Array:") print(Arr) print("\nSorted Array:") print(SortedArr)
The output of the above code will be:
Original Array: [[ 1 20 5] [21 4 3] [11 5 50]] Sorted Array: [ 1 3 4 5 5 11 20 21 50]
Example: using sort() with order parameter
The order can be used to specify the column priority for sorting. Consider the example below:
import numpy as np datatype = [("name", "S10"), ("age", int)] values = [("John", 25),("Marry", 23), ("Adam", 30)] Arr = np.array(values, dtype = datatype) #sort the array based on "age" column SortedArr = np.sort(Arr, order = "age") print("Original Array:") print(Arr) print("\nSorted Array:") print(SortedArr)
The output of the above code will be:
Original Array: [('John', 25) ('Marry', 23) ('Adam', 30)] Sorted Array: [('Marry', 23) ('John', 25) ('Adam', 30)]
❮ NumPy - Functions