NumPy - matlib.randn() function
The NumPy matlib.randn() function returns a matrix filled with random floats sampled from a univariate normal (Gaussian) distribution of mean 0 and variance 1.
Syntax
numpy.matlib.randn(*args)
Parameters
*args |
Required. Specify shape of the output. If given as N integers, each integer specifies the size of one dimension. If given as a tuple, this tuple gives the complete shape. |
Return Value
Returns a matrix of random values drawn from the standard normal distribution with shape given by *args.
Example: Values from standard normal distribution
In the example below, matlib.randn() function is used to create a matrix of given shape containing random values from the standard normal distribution, N(0, 1).
import numpy as np import numpy.matlib mat = np.matlib.randn(3,3) print(mat)
The possible output of the above code could be:
[[-0.48017485 1.19876658 1.05405775] [ 2.03861756 0.06356518 -0.40892882] [ 1.25324351 0.50041813 0.73766593]]
Example: Values from normal distribution
To create a matrix containing random values from normal distribution, N(μ, σ2), the below method can be used.
σ * np.matlib.randn()
+ μ
Consider the example below, where elements are taken from normal distribution, N(2, 32).
import numpy as np import numpy.matlib mat = 3*np.matlib.randn((3,3)) + 2 print(mat)
The possible output of the above code could be:
[[ 5.96772553 2.65834353 -1.90053868] [ 5.38957505 0.05528532 4.98796473] [-0.84263633 -2.00194974 0.39697241]]
❮ NumPy - Functions