NumPy - linalg.inv() function
The NumPy linalg.inv() function is used to compute the (multiplicative) inverse of a matrix. Given that a as square matrix, it returns the matrix ainv satisfying:
dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])
Syntax
numpy.linalg.inv(a)
Parameters
a |
Required. Specify the matrix to be inverted. |
Return Value
Returns (Multiplicative) inverse of the matrix a.
Exception
Raises LinAlgError exception, if a is not square or inversion fails.
Example: inverse matrix of a matrix
In the example below, linalg.inv() function is used to calculate inverse of the given matrix.
import numpy as np Arr = np.array([[10,20],[30, 40]]) print("Array is:") print(Arr) #calculating inverse matrix print("\nInverse matrix is:") print(np.linalg.inv(Arr))
The output of the above code will be:
Array is: [[10 20] [30 40]] Inverse matrix is: [[-0.2 0.1 ] [ 0.15 -0.05]]
Example: inverse matrix for a stack of matrices
The function can also be used to calculate the inverse matrix for a stack of matrices. Consider the following example.
import numpy as np Arr = np.array([ [[10, 20], [30, 40]], [[10, 30], [20, 40]] ]) #calculating inverse matrix print("\nInverse matrix is:") print(np.linalg.inv(Arr))
The output of the above code will be:
Inverse matrix is: [[[-0.2 0.1 ] [ 0.15 -0.05]] [[-0.2 0.15] [ 0.1 -0.05]]]
❮ NumPy - Functions