NumPy - divide() function
The NumPy divide() function returns a true division of the inputs, element-wise. The syntax for using this function is given below:
Note: It is equivalent to x1 / x2 in terms of array broadcasting.
Syntax
numpy.divide(x1, x2, out=None)
Parameters
x1, x2 |
Required. Specify arrays to be divided: x1 as dividend and x2 as divisor. If x1.shape != x2.shape, they must be broadcastable to a common shape. |
out |
Optional. Specify a location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. |
Return Value
Returns true division of x1 and x2, element-wise.
Example:
The example below shows the usage of divide() function.
import numpy as np Arr1 = np.array([[10,20],[30,40]]) Arr2 = np.array([[2,3]]) Arr3 = np.array([[2],[3]]) Arr4 = np.array([[2,3],[4,5]]) #divide each element of Arr1 by 5 print("divide(Arr1, 5) returns:") print(np.divide(Arr1, 5)) #divideing elements of Arr1 by Arr2 #Arr1 and Arr2 are broadcastable print("\ndivide(Arr1, Arr2) returns:") print(np.divide(Arr1, Arr2)) #divideing elements of Arr1 by Arr3 #Arr1 and Arr3 are broadcastable print("\ndivide(Arr1, Arr3) returns:") print(np.divide(Arr1, Arr3)) #divideing elements of Arr1 by Arr4 print("\ndivide(Arr1, Arr4) returns:") print(np.divide(Arr1, Arr4))
The output of the above code will be:
divide(Arr1, 5) returns: [[2. 4.] [6. 8.]] divide(Arr1, Arr2) returns: [[ 5. 6.66666667] [15. 13.33333333]] divide(Arr1, Arr3) returns: [[ 5. 10. ] [10. 13.33333333]] divide(Arr1, Arr4) returns: [[5. 6.66666667] [7.5 8. ]]
❮ NumPy - Functions