NumPy - clip() function
The NumPy clip() function is used to clip (limit) the values in an array. The function returns an array with the elements of a, but where values < a_min are replaced with a_min, and those > a_max with a_max.
Syntax
numpy.clip(a, a_min, a_max, out=None)
Parameters
a |
Required. Specify the array containing elements to clip. array_like. |
a_min, a_max |
Optional. Specify minimum and maximum value. If None, clipping is not performed on the corresponding edge. Only one of a_min and a_max may be None. Both are broadcast against a. |
out |
Optional. Specify the destination to place the result. If provided, it must have a shape matching with the returned array. |
Return Value
Returns an array with the elements of a, but where values < a_min are replaced with a_min, and those > a_max with a_max.
Example:
In the example below, clip() function is used to clip the value of all elements of a given array.
import numpy as np Arr = np.array([10, 20, 30, 40, 50, 60]).reshape(2,3) #clipping elements of Arr NewArr = np.clip(Arr, 25, 50) #displaying the result print("Original Array:") print(Arr) print("\nClipped Array:") print(NewArr)
The output of the above code will be:
Original Array: [[10 20 30] [40 50 60]] Clipped Array: [[25 25 30] [40 50 50]]
Example:
In the example below, clip() function is used to replace all negative values with 0.
import numpy as np Arr = np.array([-10, -20, -30, 10, 20, 30]).reshape(2,3) #clipping negative elements only NewArr = np.clip(Arr, a_min=0, a_max=None) #displaying the result print("Original Array:") print(Arr) print("\nClipped Array:") print(NewArr)
The output of the above code will be:
Original Array: [[-10 -20 -30] [ 10 20 30]] Clipped Array: [[ 0 0 0] [10 20 30]]
❮ NumPy - Functions